Package: PPCI 0.1.5
David Hofmeyr
PPCI: Projection Pursuit for Cluster Identification
Implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) <https://jmlr.csail.mit.edu/papers/volume17/15-307/15-307.pdf>; minimum normalised cut, Hofmeyr (2017) <doi:10.1109/TPAMI.2016.2609929>; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) <doi:10.1109/SSCI.2015.116>.
Authors:
PPCI_0.1.5.tar.gz
PPCI_0.1.5.zip(r-4.5)PPCI_0.1.5.zip(r-4.4)PPCI_0.1.5.zip(r-4.3)
PPCI_0.1.5.tgz(r-4.4-x86_64)PPCI_0.1.5.tgz(r-4.4-arm64)PPCI_0.1.5.tgz(r-4.3-x86_64)PPCI_0.1.5.tgz(r-4.3-arm64)
PPCI_0.1.5.tar.gz(r-4.5-noble)PPCI_0.1.5.tar.gz(r-4.4-noble)
PPCI_0.1.5.tgz(r-4.4-emscripten)PPCI_0.1.5.tgz(r-4.3-emscripten)
PPCI.pdf |PPCI.html✨
PPCI/json (API)
# Install 'PPCI' in R: |
install.packages('PPCI', repos = c('https://davidhofmeyr.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/davidhofmeyr/ppci/issues
- breastcancer - Discrimination of Cancerous and Non-Cancerous Breast Masses
- dermatology - Eryhemato-Squamous Disease Identification
- optidigits - Optical Recognition of Handwritten Digits
- pendigits - Pen-based Recognition of Handwritten Digits
- phoneme - Speech Recognition through Phoneme Identification
- yale - Face Recognition
Last updated 5 years agofrom:aa8fa12f6c. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 14 2024 |
R-4.5-win-x86_64 | WARNING | Oct 14 2024 |
R-4.5-linux-x86_64 | WARNING | Oct 14 2024 |
R-4.4-win-x86_64 | WARNING | Oct 14 2024 |
R-4.4-mac-x86_64 | WARNING | Oct 14 2024 |
R-4.4-mac-aarch64 | WARNING | Oct 14 2024 |
R-4.3-win-x86_64 | WARNING | Oct 14 2024 |
R-4.3-mac-x86_64 | WARNING | Oct 14 2024 |
R-4.3-mac-aarch64 | WARNING | Oct 14 2024 |
Exports:add_subtreecluster_performancedf_mcdf_mddf_md_cppdf_ncutdncut_xf_mcf_mdf_md_cppf_ncuthp_plotis_minimismin_cppmc_bmcdcmcdrmchmcppmd_bmd_b_cppmd_reldepthmddcmddrmdhmdppncut_bncut_xncutdcncutdrncuthncutppnode_plotnorm_vecoptidigits_mean_imagesplot.ppci_cluster_solutionplot.ppci_hyperplane_solutionplot.ppci_projection_solutionppclust.optimsubtree_widthsuccess_ratiotree_plottree_prunetree_split
Dependencies:latticeMatrixrARPACKRcppRcppArmadilloRcppEigenRSpectra